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Introduction
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Why z-Transform?
 A generalization of Fourier transform

 Why generalize it?

 FT does not converge on all sequence

 Notation good for analysis

 Bring the power of complex variable theory deal with the 
discrete-time signals and systems
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Definition

 The z-transform of sequence x(n) is defined by
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z-Plane
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Fourier Transform is to evaluate z-
transform on a unit circle.
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Periodic Property of FT
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Can you say why Fourier Transform is a periodic 
function with period 2?



Zeros and Poles
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Definition
 Give a sequence, the set of values of z for which the z-

transform converges, i.e., |X(z)|<, is called the region 

of convergence.
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ROC is centered on origin and 

consists of a set of rings.



Example: Region of Convergence
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ROC is an annual ring centered on the 

origin.
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Stable Systems

 A stable system requires that its Fourier transform is 

uniformly convergent.
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⚫ Fact: Fourier transform is to evaluate z-
transform on a unit circle.

⚫ A stable system requires the ROC of z-
transform to include the unit circle.



Example: A right sided Sequence
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Example: A right sided Sequence
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For convergence of X(z), we 

require that
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Example: A right sided Sequence
ROC for x(n)=anu(n)
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Which one is stable?



Example: A left sided Sequence
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Example: A left sided Sequence
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Example: A left sided Sequence
ROC for x(n)=−anu(− n−1)
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Region of 
Convergence
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Represent z-transform as a 
Rational Function
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where P(z) and Q(z) are 

polynomials in z.

Zeros: The values of z’s such that X(z) = 0

Poles: The values of z’s such that X(z) = 



Example: A right sided Sequence
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ROC is bounded by the 

pole and is the exterior 

of a circle.



Example: A left sided Sequence
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Example: Sum of Two Right Sided Sequences
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1/12

ROC is bounded by poles

and is the exterior of a circle.

ROC does not include any pole.



Example: A Two Sided Sequence
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ROC is bounded by poles

and is a ring.

ROC does not include any pole.



Example: A Finite Sequence

25

10       ,)( −= Nnanx n

ROC: 0 < z < 

ROC does not include any pole.
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Properties of ROC
 A ring or disk in the z-plane centered at the origin.

 The Fourier Transform of x(n) is converge absolutely iff the 

ROC includes the unit circle.

 The ROC cannot include any poles

 Finite Duration Sequences: The ROC is the entire z-plane 

except possibly z=0 or z=.

 Right sided sequences: The ROC extends outward from the 

outermost finite pole in X(z) to z=.

 Left sided sequences: The ROC extends inward from the 

innermost nonzero pole in X(z) to z=0.
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More on Rational z-Transform
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Consider the rational z-transform 

with the pole pattern:

Find the possible 
ROC’s



More on Rational z-Transform

28

Re

Im

a b c

Consider the rational z-transform 

with the pole pattern:

Case 1: A right sided Sequence.



More on Rational z-Transform
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Consider the rational z-transform 

with the pole pattern:

Case 2: A left sided Sequence.



More on Rational z-Transform
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Consider the rational z-transform 

with the pole pattern:

Case 3: A two sided Sequence.



More on Rational z-Transform
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Consider the rational z-transform 

with the pole pattern:

Case 4: Another two sided Sequence.


